If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+15t-14=0
a = 4; b = 15; c = -14;
Δ = b2-4ac
Δ = 152-4·4·(-14)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{449}}{2*4}=\frac{-15-\sqrt{449}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{449}}{2*4}=\frac{-15+\sqrt{449}}{8} $
| 55x+11x=35-24 | | 12(x-5)=4 | | 3(4+7a)-5(1-2a)=57 | | 2-8x=x+10 | | 4x=282/7x+5= | | 7m-4=9+7m | | 45=5y+5 | | 8x+14=38+4x | | (16x)^2+(9x)^2=70^2 | | 7)m+3)=7m+3 | | 3x+10-2x=25 | | 0.95x-210000=0 | | 5y+10y+15=60 | | 9x-4/7=12-3x | | 10x-35=65+5x | | 4x+5x+8=35 | | .03=0.6x | | X²-4x=-3x+8 | | X2-12x-90=0 | | 5x-35+5x=15 | | 9/10=x+10/40 | | 3x+2x=40/10 | | 4^(5*x+7)=10 | | 3(2h+9)=2h(4h-5) | | S^-5s-14=0 | | 40y′′+(y′)2=0 | | x+5=$ | | 2x-4/3+x-5/4=x-5/6-3 | | 6(2-x)=3(x+9) | | X+4=48-3x | | 7(2x-4)=56 | | 11x-3x=32;x= |